Constraint-Based 2D Tile Game Blending in the Sturgeon

System

Seth Cooper?

!Northeastern University, Boston, MA, USA

Abstract

In this work, we explore various approaches to blending multiple games, by building on the Sturgeon constraint-based 2D tile
level generation system. We introduce a game grid, which, when used as an input to the generator, allows elements such as
tiles, tile patterns, and reachability rules to be specified on a per-location basis. We demonstrate how the system can: use the
layout of one game’s levels for another game’s tile patterns; generate levels with one game’s tile patterns that use another
game’s reachability rules; and generate levels that combine tiles, tile patterns, and reachability rules from multiple games.

Keywords

procedural level generation, constraint solving, game blending

1. Background

This work explores various applications of blending
different games to generate levels using the Sturgeon
constraint-based level generation system [1]. We intro-
duce a game grid, that allows various properties of the
generated level to be specified on a per-location basis.
These properties include tiles, tile patterns, and reach-
ability rules. We demonstrate several applications of
blending across multiple games from different genres, in-
cluding blending layouts and tile patterns, blending reach-
ability and tile patterns, and blending multiple games into
a single level.

Blending different games can be seen as combinational
creativity, whereby new ideas can be produced by com-
bining familiar ones [2]. This approach might lead to
new game ideas or inspirations.

This work falls in the domain of procedural content
generation (PCG) [3]. It incorporates tile patterns learned
from example levels, similar to WaveFunctionCollapse [4]
and model synthesis [5], and therefore can be considered
a form of procedural content generation via machine
learning (PCGML) [6].

Prior work in PCG has used constraint-based level gen-
eration, including work using Answer Set Programming
[7, 8] and constrained MdMC [9].

Work has also been done in the area of blending games
or levels; for example, using Variational Autoencoders to
enable controlled blending between platform game levels
[10] or to generate blends of dungeon and platformer
levels [11]. Some work has proposed the combination
of different machine-learned models for content genera-
tion [12], such as blending models of levels learned from

The Joint Workshop Proceedings of the 2022 Conference on Artificial
Intelligence and Interactive Digital Entertainment
Q& se.cooper@northeastern.edu (S. Cooper)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

[== CEUR Workshop Proceedings (CEUR-WS.org)

Q
o
3

Tag grid

oa
=

EEEEEEEEEEEEEEEEEREEEEEEEE
EEEEEEREEEEEEEEEEREEEREEEH
EEEREEEEEEREEEEEEEEEEEEAH
ERERRRERRRRRRRRRR R R R R R R R
EREERRRRERERRRRRERRRRRR AN
EEEEEERREEEREERREEREEEAHHAH
EEEREERREERREEEEEREENHHHAH
EEEEREEEEEEREEEEEEEAHHHAAN
RERERRRERRRRRRRERRRREHHHHHHHH
R R R R R R R R R R R R R A
EEEREREREEERREEEE A
COREREREZREZREREHHHHHHHHHHH
QONNOREEREEREEHHHHHHHHHHHH D
QOAAAAAARERREHHHHHHHHHHHHH
0QAAAAAAAGRAHHHHHHHHHHHHHH
6O00AAAAAAAAHHHHHHHHHHHHHH
000AAAAAAAAHHHHHHHHHHHHHH O
GROAAAAAAAAAHHHHHHHHHHHHH
QQAAAAAAAAAAHHHHHHHHHHHHH
0QAAAAAAAAAAHHHHHHHHHHHHH
000AAEAAAAEANAAAHHHHHHHHHHHH
0EAAAAAAAANAAAHHHHHHHHHHHH
0QOAAAAAAAAAAHHHHHHHHHHHH
0QAAAAAAAAAAAAHHHHHHHHHHH
0QAAAAAAAAAAAAHHHHHHHHHHH

Generated levels

Figure 1: A level generation example blending three games
— mariobros (M), cave (C), and icarus (I) — into a single
level. The top row shows the input tag grid, which specifies
where and which tiles can be placed, and the game grid, which
specifies which game’s information can be used at each loca-
tion. The bottom row shows generated levels, with the red
line showing the reachability path through the level (notably,
paths can be circuitous). How the player can move changes
within the level from game to game. Median, maximum gen-
eration times were 3s, 6s.

gameplay videos [13]. Other work has examined blend-
ing parts of multiple games into a single level, guided
by “sketches” and partitioning [14]. Platformer jump
physics have been extracted from blended levels [15].

mailto:se.cooper@northeastern.edu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

maze | tomb

B

walk slide

Pattern templates

platform supercat
l:‘ source
P D open (destination)
I:] open (path)
l:] open (off-path)
l:] closed
jump wall jump

Reachability templates

Figure 2: Pattern and reachability templates used in this work. Pattern templates are used to learn and apply tile patterns.
Reachability templates are used to ensure the goal of the level is reachable form the start; full reachability templates are not

shown, only one example is given for each.

Tag
grid

Game
grid

Generated
levels

Figure 3: mariobros (M) level used as functional layout to generate a mainly icarus (I) level. Median, maximum generation

times were 7s, 7s.

Recent work has explored style transfer between games
[16], similar to the layout and image blending presented
here.

2. Approach

2.1. Sturgeon

This work is an extension of the Sturgeon system. We
give a brief overview of the system here to clarify some
terms used in the applications. A more thorough descrip-
tion is given in [1].

Sturgeon works on 2D tile-based games. A tile is an
entity that can be placed at a location in a grid; tiles can
have associated with them either an image (e.g. brick),
functional information (e.g. solid), or both. A level is
thus a grid of tiles. The original Sturgeon also works
with tag grids, where a tag has some number of tiles
associated with it. A tag grid can be provided with an
example level to associate tiles with tags, and can be
used to specify what tiles can be placed at a location in
a generated level. Levels in Sturgeon are considered to
exist inside an infinite grid of void tiles and tags.

Sturgeon generates levels via solving constraint prob-
lems. Level design rules are specified using a high-level

solver API that allows constraints of counts and implica-
tions over Boolean variables. These constraints are then
translated to a low-level solver for efficient solving.

As one type of level design rule, Sturgeon can extract
tile patterns from an example level and tag grid. These
patterns specify local constraints between tiles in gener-
ated levels (e.g. a top-right pipe tile must be to the right
of a top-left pipe). Sturgeon supports different pattern
templates which specify how these relationships are ex-
tracted from example levels and applied (via constraints)
to generated levels. Pattern templates are shown in Fig-
ure 2(left).

As another rule, the distribution (and if desired, general
locations) of tiles in generated levels can be constrained
to be similar to that of the example level.

Additionally, Sturgeon provides reachability rules,
where a level must have a start and goal and the goal
must be reachable from the start. This is supported by an
additional set of constraints on finding a path through
a reachability graph. Roughly speaking, the nodes in
the graph correspond to locations in the grid, and edges
represent which nodes are potentially reachable from
other nodes. Whether a node is actually reachable or
not via an edge depends on the placement of open (i.e.
traversable by the player) and closed tiles. How a player

> @ - =) ! %)
g 5% S LEYSETIYETLEE TPSsy 82
= o O S T =+ < 17 B S < R o
5 2= a n o= g r °Eg 0y ¢ o= I = g 2
<} S & 1S 28 g s 22 E oS Q < C S
£ £ g 2 LESSEPR2ELELS SEggEg w8
= bl
§a g2 § E@fssfagsgds gEg g 38
c S & S SEEYSLETESCE 556 2%
E & v B B} = =g v 5 = 9] Q o
5E oE SusBSTIEEE 28 $:258 I3
& S < <] as s 8 8 - o0 2 a8 & Sag= w -
et 3 = c = S22 88 o B ¥ g S a—= o I T
8 &% omm.mm&pmmm.mmwmm S &gk B3
3 2 S cf g SE-BRS2SEZEEL8E fpBEiT oS
g £3 e S fog¥EmfsSsEEe® EZEE EPE
5 5 E g £ £ 2EYP o hwEsSESSy S-f5g oS
= v 522 9 EPEngetdSTEEET TR esE o2
g . o « % < Q" -
5 52 2%5 T EEomuioLsREESE f£SEEg §F
< s L= c YIS ¥ E Wer 8 S 0oy g8 Toudg?d S
of E o 2 EZ 5} n.lmoha...ulhtn e a3 ©
(&) 5 ¢ = 8 N ® mosa a, [T A < S s = T =2 3 s a0 .5
S o 5 A o ..L.l.XnW hm,W 9] v 8 QN o = B
< & I T 0824 0w” oE 50 e =g 4= EF
2] =25 2 = soth.>dexmde.m v E s g3 SaRo)
c E 0.9 an gsp.wrteea I L S0 =) 5 88 L=
< g g % & ESEPTELZCE o802 525z Ho
] Q ()] ISER7) L =] = o D 8 4 = ¥ S
I & 9 8 9 S Eg®»2e8x T8 0 kS © 5 a0 S g
a] m.,mmiae 5 gma - 828328 - 9 3
£ smn = S HEHTus=Esg 228 >N o’ EL o
1" 2 v 88 4 E g = TR - I O T n
- = (&) ° — Q= 7B = ea g [=HR=T IS -
5 = 3 8 2 0 o0 up Wg 9 2S5 E8E 380 H g8 .S 9w
= < [t Q < < o 8 .5 B - - g O
35 SR i PR REE Y P rTEERSE 82828 &
%S 2oy N FIFEIHEEEILAESZALEE OISO o
= FE: N L& AfiHEE<sl28sS LEE8TE 3

Generated levels

Game
grid

R % = B MR XK XK A AR EAREARK KRR PEEEEEEEs e e

= = foRopiotssiotspsiotsioiotoel

= = PET = e = = o
= e ooy =

] = s e = =

& PR] =

Bl = maw mam =

= =

AXXXXXK

=
=
=
= = []] “ ®
=
=

Tag
grid
xxax
H
H
ree
H
xxxx
e
.
H
i
H
H
H
sreer
-
-

= e
&

XXXXXXXX
xx
|
X
X
%
X

%
X
X
|

5
= &

= = e
= &
= g

& = = = e = Em ek . mx
ety = [ERPIe g etsieiiieieieielBie)

= s)
s

generating levels for a differ-

was changed to be based only on the

tiles available at each location, rather than the tiles and

tags.

)

the pattern placeability determination (i.e.

whether it is possible to actually place a pattern at a
In this work we chose to use the smaller pattern tem-
plates nbr-1 and nbr-plus, shown in Figure 2(left). We

routines were updated to handle multiple example levels
found these still maintained tile neighbors, but gave the
generator flexibility with tile placement. This flexibility

helped when, for example,

at once. Also,
particular location

Figure 4: icarus (I) level used as functional layout to gen-
erate a mainly mariobros (M) level. Median, maximum gen-

eration times were 26s, 27s.
can move in a game is represented by a reachability tem-

plate, which is a discrete, tile-based approximation of the
player’s (potentially continuous) movement. One inter-
esting property of this approach is that it only requires
there to be a path, but it does not have to be a short path,

Generated levels

Figure 6: zelda patterns with platform reachability. Me-
dian, maximum generation times were 14s, 16s.

Generated levels

Figure 7: zelda patterns with tomb reachability. Median,
maximum generation times were 16.2m, 32.1m.

ent game’s reachability. Example reachability templates
are shown in Figure 2(right). Also, in applications where
there is more that one game in the game grid, we made
the pattern constraints soft, so that the generator could
violate them if needed, but would try to minimize the
number of such violations.

Although Sturgeon has support for multi-pass level
generation, in this work we use simultaneous generation,
where each tile has both an image and a function, and
the image and functional grid for a level is created in
one step. Additionally, while Sturgeon supports multiple
low-level solvers, for this work we use PySAT’s [17] RC2
solver [18] with MiniCard cardinality constraints [19], as
that was found to be effective in previous work.

2.3. Games

Here we describe the games, along with the pattern and
reachability templates used in this work. These games
are essentially a subset of those used in [1].

« cave: A simple custom cave game. Uses a custom ex-
ample level with sprites used from Kenney [20] and the
nbr-plus tile pattern template. Uses the maze reacha-
bility template, which is single tile four-direction move-
ment.

e mariobros: Super Mario Bros [21]. Uses level 1-1 from
the VGLC [22], with minor cleanup, as an example and

Generated levels

Figure 8: icarus patterns with supercat reachability and
column-wrapping. Median, maximum generation times were
3.8m, 7.2m.

Generated levels

Figure 9: icarus patterns with tomb reachability and
column-wrapping. Median, maximum generation times were
32s, 2.5m.

the nbr-1 tile pattern template. Uses the platform
reachability template, which includes platform-style
movement such as walking, falling, and jumping, inspired
by the pathfinding in [23].

e icarus: Kid Icarus [24]. Uses level 1 from the VGLC
[22], with minor cleanup, as an example and the nbr-1
tile pattern template. Uses the platform reachability
template. Some blends involving icarus also allow
column-wrapping.

e supercat: Super Cat Tales [25]. Uses the tree section
of level 1-7 as an example and the nbr-1 tile pattern tem-
plate. Uses the supercat reachability template, which is
a simplification of the game’s continuous platform-style
movement, in which the player can run up walls, but
only jump off walls and ledges.

o tomb: Tomb of the Mask [26]. Uses level 1 as an exam-
ple and the nbr-plus tile pattern template. Uses tomb
reachability template, in which the player can move four

Generated levels

s
) o
A
s
s
-
A
A
s
4
y

Figure 10: mariobros patterns with supercat reachability.
Median, maximum generation times were 4s, 13s.

directions and slides until hitting something.

e zelda: The Legend of Zelda [27]. Uses dungeon 1-1
from the VGLC [22], with minor cleanup, as an exam-
ple and the nbr-1 tile pattern template. Uses the maze
reachability template.

3. Applications

Here we describe some applications of multi-game blend-
ing. For each example in the applications, we generated
10 levels for timing information. Levels were generated
on a 2018 MacBook Pro. Levels shown in figures were
hand-selected from these to indicate the variety of levels
generated as well as highlight potential artifacts in the
generated levels.

3.1. Functional Layout-Image Blending

In this application, we generate a level for one game that
follows the functional layout of another game’s level. We
use levels from both games as example levels (in this case,
mariobros and icarus). Then we use the functional
grid from one game as the tag grid, and the game grid
specifies the other game. However, instead of using a
uniform game grid, wherever there is a tag that is not
known by the other game, the tag grid’s game is used
at that location to allow its tiles to be placed instead.
This results in a level that effectively uses the functional
layout of one game with the images from another. This
approach does rely on the games sharing common tags.
In these examples we did not apply reachability rules,
and we used 5x5 regions for the distribution rules to try
to capture some tile location preferences.

Figure 3 shows the mariobros level used as a tag grid
to generate an icarus level. Notably, the generator does
not place either mariobros’s flagpole or icarus’s door,
which might make the goal unclear. The distribution

Generated levels

Figure 11: mariobros patterns with tomb reachability. Me-
dian, maximum generation times were 8s, 15s.

regions also place blue blocks only at higher locations.
Since the two games do not have the same background
color, the pipes still have a bit of blue sky behind them.

Figure 4 shows the icarus level used as a tag grid
to generate a mariobros level. Notably, clouds appear
partway up the level, as captured by the distribution
regions. Also, in the top-right near the exit, the generator
is able to place the exit door, and has placed part of a
flagpole next to the door. The generator is also able to
place bits of the flagpole where the bottom or top connect
to the icarus game.

3.2. Tile Pattern—Reachability Blending

In this application, we generate a level using tile patterns
from one game and the reachability template from an-
other game, essentially generating a level from the first
game that can be played by the second.

To do this, we simply specify the reachability template
from a different game to be used when generating a level.
Each game’s level was used as an example independently.
Special game grids were not necessary.

Figures 5-11 show levels generated using patterns
from one game and reachability from another. Interest-
ingly, when using supercat reachability, the generator
is able to place gaps and walls that can be used to jump.
When using tomb reachability, the generator has to place
blocks so that the player can stop sliding.

For zelda patterns with tomb reachability (Figure 6),
we had to use soft pattern constraints. This appears to
be due to the goal tile being the top-left of the Triforce,
which was surrounded by open tiles in the example level,
thereby preventing a block being placed next to it for
the player to stop on the goal. This can result in an
incomplete Triforce being generated. The use of solid
stairs also allowed the tomb reachability to stop at them.
These levels also took notably longer (up to half an hour)
to generate.

Tag grid
Game grid
IITIIIIIIIIIIIIIIIIIIIMMMMMMMMMMMMMMMMMMM
IIIIIIIIIIIIIIIIIIIIIIMMMMMMMMMMMMMMMMMM
IIIIIIIIIIIIIIIIIIIIIIITMMMMMMMMMMMMMMMMM
IIIIIIIIIIIIIIIIIIIIIIIIMMMMMMMMMMMMMMMM
IIIIIIIIIIIIIIIIIIIIIIIIIMMMMMMMMMMMMMMM
IIIIIIIIIIIIIIIIIIIIIIIIIIMMMMMMMMMMMMMM
MITIIIIIIIIIIIIIIIIIIIIIIIIMMMMMMMMMMMMM
MMIIIIIIIIIIIIIIIIIIIIIIIIIIMMMMMMMMMMMM
MMMIIIIIIIIIIIIIIIIIIIIIIIIIIMMMMMMMMMMM
MMMMIIIIIIIIIIIIIIIIIIIIIIIIIIMMMMMMMMMM
MMMMMIIIIIIIIIIIIIIIIIIIIIIIIIIMMMMMMMMM
MMMMMMIIIIIIIIIIIIIIIIIIIIIIIIIIMMMMMMMM
MMMMMMMIIIIIIIIIIIIIIIIIIIIIIIIIIMMMMMMM
MMMMMMMMIIIIIIIIIIIIIIIIIIIIIIIIIIMMMMMM
MMMMMMMMMIIIIIIIIIIIIIIIIIIIIIIIIIIMMMMM
MMMMMMMMMMIIIIIIIIIIIIIIIIIIIIIIIIIIMMMM
MMMMMMMMMMMIIIIIIIIIIIIIIIIIIIIIIIIIIMMM
MMMMMMMMMMMMIIIIIIIIIIIIIIIIIIIIIIIIIIMM
MMMMMMMMMMMMMIIIIIIIIIIIIIIIIIIIIIIIIIIM
MMMMMMMMMMMMMMIIIIIIIIIIIIIIIIIIIIIIIIII
MMMMMMMMMMMMMMMIIIIIIIIIIIIIIIIIIIIIIIID
MMMMMMMMMMMMMMMMIIIIIIIIIIIIIIIIIIIIIIIT
MMMMMMMMMMMMMMMMMIIIIIIIIIIIIIIIIIIIIIID
MMMMMMMMMMMMMMMMMMIIIIIIIIIIIIIIIIIIIIIT
MMMMMMMMMMMMMMMMMMMIIIIIIIIIIIIIIIIIIIIT

Generated levels

Figure 12: Blending mariobros (M) and icarus (I). Median,
maximum generation times were 25s, 1.9m.

3.3. Multi-Game Blending Within Levels

In this application, we generate levels that contain mul-
tiple games. This is done by using custom game grids,
which can cause the tiles, patterns, and reachability to
change from location to location. The tag grids used are

Generated levels

Figure 13: Blending cave (C) and tomb (T). Median, maxi-
mum generation times were 2s, 2s.

Game grid

o

anonnonoNHEAEAgAaH300000000
aonononnonHEAEAaAaH300000000
aononnonnoNHEAEAaaaH300000000
anonnononHEAEAaaFaH300000000
aonononoNHEAAAaAaH300000000
anononoNHEAaAaaFaH300000000
aonaononoNHEAEAaaaH300000000
anonnonnoNHEAEAaAaH300000000
anononnoNHEAEAaAaH300000000
anonnononHEAAAaAaH300000000

id Generated levels

I
HH

Figure 14: Blending supercat (U) and icarus (I). Median,
maximum generation times were 1.1m, 5.0m.

either default tags or void tags to carve out a shape for
the level. In this application, we processed all the games’
example levels (except zelda, which was not used) at
once.

Figure 12 shows a blend of mariobros and icarus,
with two horizontal mariobros sections separated by
a vertical icarus section (the asterisk tag allows any
tile to be placed). Both games have the same platform
reachability throughout. Figure 1 is similar, but adds a
section of cave in between the two games. Interestingly,
even after leaving the cave, the platform reachability
template can then stand on the top of cave tiles to jump.
Some partial mariobros flags are also placed.

Figure 13 shows a blend of cave and tomb, with two
sections of cave separated by a section of tomb. Since
the reachability template is determined by the game at
the source of the edge, when leaving the tomb section,
the player slides until hitting a cave wall. Also, since
tomb uses black tiles for both the open play area and
the non-playable surrounding area, in the transitions
between games it can be unclear what area is open to the
player.

Q

HHHEEEHHHEEEHHHEEEAHHEEE Q)
HHHEREHHHEEEHHHEREHHHERE
HHHEEEHHHEEEHHHEREHHHERE
EEEHHHEERRHHHERRHHHEZEHHH

3
@
=

EEEHHHEEE N R H R R H
EEREHHHEEE N HEEEHHHEREHH
EEEHHHEERRHHHEEEHHHEREHHH
HHHEREHHHEEZEHHHEREAHHEEE
HHHEREHHHEEEHHHEREHHHEEE
HHHEREHHHEREHHHEREHHHZEEE
EEREHHHEERRHHHERRHHHEREHHH
EEEHHHEERRHHHEERHHHEREHHH
EEREHHHEEEHHHEEEHHHEEEHHH
BEEEHHHEEREHHHEREHHHEREHHH JQ
BREEHHHERRHHHERREHHHRREHHH =
R R R H R R R H R R R R R
R R R H R R R H R R R R R
HHHEREHHHEEEHHHEEEHHHEREE
EEEHHHEERERAHHEEEHHHEREHHA
EEEHHHEERRHHHEREHHHEREHHH
EEEHHHEERERHHHEREHHHEZEHHH
HHHEREHHHEEEHHHZREHHHZEE
HH R R R HHH R R R HH R R HHHE R R
HHHEEEHHHEEEHHHEREHHHEEE

Generated levels

Figure 15: Blending mariobros (M) and icarus (I) in a
checkerboard pattern. Median, maximum generation times
were 3.8m, 19.9m.

Figure 14 shows a blend of icarus and supercat,
where each game’s section has a block of the other game
in it, making the transition between games more frequent.
Both games share walking and falling, but the types of
jumps available change from game to game.

Figure 15 shows a checkboard of mariobros and
icarus with frequent changes between games. Perhaps
unsurprisingly, there is not much overall coherent struc-
ture to the level, and the generator does not place clear
goal structures (flagpole, door) at the end of the level.

Figure 16 shows a two-step generation process that
blends three games in a different way. First, a cave level
is generated (without any reachability requirements).
Then, it is converted into a game grid with the walls
becoming icarus and the rest becoming mariobros.
This game grid is then used to generate a level. Similar
to the checkerboard levels, the frequent game changes
appear to prevent the level from having a clear structure.

When blending multiple games in a level, it does ap-
pear that switching games too frequently may not be
desirable, and can obscure the goal of the level.

4. Conclusion

In this work we presented an approach to constraint-
based game blending, that uses a game grid that can
specify tiles, tile patterns, and reachability to be used
by the constraint solver on a per-location basis in the

Generated cave levels used as game grid

@

]

Generated levels

Figure 16: Generating cave levels, and then using those as
the game grid to generate blends of mariobros and icarus.
Median, maximum generation times were 2s, 2s for the cave
levels and 10s, 1.1m for the mariobros / icarus levels.

grid. We showed three applications: using one game’s
level layout with another game’s tile patterns, generating
levels using the tile patterns from one game and the
reachability from another game, and generating levels
that combine multiple games in a single level.

We showed game blends that produced output in a
subjectively reasonable amount of time (a few seconds to
a few minutes). Some work is necessary to find settings
that produce output within a desired timeframe; however,
once those settings are found they can be used to generate
many levels. Some example blends we tried did not seem
to work well. For example trying to generate a tall zelda
level with platformreachability. It may be that in these
cases it was difficult for the solver to find a way to fit
through the small openings between zelda rooms.

We would like to be able to play the generated blended
level, and the changing movement within a level. This
would need to deal with unclear goals in blended lev-
els. Potentially, a level designer could indicate certain
arrangements of tiles in the examples as needing to be
maintained in their entirety in the generated levels.

While we used the game grid to specify games, it could
be used to specify other collections of tiles and patterns
within a game, such as different example levels within the
same game, or possibly different styles or even difficulties
(if these could be captured in tiles and patterns).

It may also be interesting to allow multiple reachability
templates simultaneously, to generate levels that can be

played in multiple games at the same time.

Currently, the game grid is fully specified as an input
to the generator. However, we would like to give the
generator more flexibility in where games are placed, for
example, leaving some locations unspecified and letting
the generator fill them in. Then it may be possible to, for
example request a level that starts as mariobros and
ends as icarus, but let the generator decide exactly how
the transition happens.

Acknowledgments

The authors would like to thank Colan Biemer and
Anurag Sarkar for their feedback.

References

(1]

(6]

(7]

(8]

S. Cooper, Sturgeon: tile-based procedural level
generation via learned and designed constraints,
Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment
18 (2022) 26-36.

M. A.Boden, The Creative Mind: Myths and Mecha-
nisms, 2nd ed., Routledge, London; New York, 2004.
N. Shaker, J. Togelius, M. J. Nelson, Procedural Con-
tent Generation in Games, Springer International
Publishing, 2016.

M. Gumin, Wavefunctioncollapse, https://github.
com/mxgmn/WaveFunctionCollapse, 2016.

P. Merrell, D. Manocha, Model synthesis: A general
procedural modeling algorithm, IEEE transactions
on visualization and computer graphics 17 (2010)
715-728.

A. Summerville, S. Snodgrass, M. Guzdial,
C. Holmgard, A. K. Hoover, A. Isaksen, A. Nealen,
J. Togelius, Procedural Content Generation via
Machine Learning (PCGML), IEEE Transactions on
Games 10 (2018) 257-270.

M. J. Nelson, A. M. Smith, ASP with applications
to mazes and levels, in: N. Shaker, J. Togelius, M. J.
Nelson (Eds.), Procedural Content Generation in
Games, Springer International Publishing, 2016, pp.
143-157.

I. Karth, A. M. Smith, WaveFunctionCollapse is con-
straint solving in the wild, in: Proceedings of the
12th International Conference on the Foundations
of Digital Games, 2017, pp. 68:1-68:10.

S. Snodgrass, S. Ontanién, Controllable proce-
dural content generation via constrained multi-
dimensional Markov chain sampling, in: Proceed-
ings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, 2016, pp. 780-786.
A. Sarkar, Z. Yang, S. Cooper, Controllable level
blending between games using variational autoen-

(13]

(14]

(19]

— e
DN DN DD
[« ¥ BN
[i’

(27]

coders, in: Proceedings of the Experimental Al in
Games Workshop, 2019, p. 8.

A. Sarkar, S. Cooper, Dungeon and platformer level
blending and generation using conditional VAEs,
in: 2021 IEEE Conference on Games, 2021, pp. 1-8.
M. Guzdial, M. Riedl, Combinatorial creativity for
procedural content generation via machine learn-
ing, in: Proceedings of the First Knowledge Extrac-
tion from Games Workshop, 2017.

M. Guzdial, M. Riedl, Learning to blend computer
game levels, in: Proceedings of the Seventh Inter-
national Conference on Computational Creativity,
2016.

S. Snodgrass, A. Sarkar, Multi-domain level genera-
tion and blending with sketches via example-driven
BSP and variational autoencoders, in: International
Conference on the Foundations of Digital Games,
2020, pp. 1-11.

A. Summerville, A. Sarkar, S. Snodgrass, J. C. Os-
born, Extracting physics from blended platformer
game levels, in: Proceedings of the Experimental
Al in Games Workshop, 2020.

A. Sarkar, S. Cooper, tile2tile: learning game fil-
ters for platformer style transfer, Proceedings of
the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment 18 (2022) 53-60.
A.Ignatiev, A. Morgado, J. Marques-Silva, PySAT: a
Python toolkit for prototyping with SAT oracles, in:
Theory and Applications of Satisfiability Testing —
SAT 2018, 2018, pp. 428-437.

A. Ignatiev, A. Morgado, J. Marques-Silva, RC2: an
efficient MaxSAT solver, Journal on Satisfiability,
Boolean Modeling and Computation 11 (2019) 53~
64.

M. H. Liffiton, J. C. Maglalang, A cardinality solver:
more expressive constraints for free, in: Theory and
Applications of Satisfiability Testing — SAT 2012,
2012, pp. 485-486.

Kenney, Free game assets, https://www.kenney.nl/
assets, 2022.

Nintendo, Super Mario Bros., 1983. Game [NES].
A.J. Summerville, S. Snodgrass, M. Mateas, S. On-
tafién, The VGLC: The Video Game Level Corpus,
arXiv:1606.07487 [cs] (2016).

A.J. Summerville, S. Philip, M. Mateas, MCMCTS
PCG 4 SMB: Monte Carlo tree search to guide plat-
former level generation, in: AAAI Conference on
Artificial Intelligence and Interactive Digital Enter-
tainment, 2015.

Nintendo, Kid Icarus, 1987. Game [NES].
Neutronized, Super Cat Tales, 2016. Game [iPhone].
Happymagenta, Tomb of the Mask, 2016. Game
[iPhone].

Nintendo, The Legend of Zelda, 1986. Game [NES].

https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://www.kenney.nl/assets
https://www.kenney.nl/assets

	1 Background
	2 Approach
	2.1 Sturgeon
	2.2 Game grid and extensions
	2.3 Games

	3 Applications
	3.1 Functional Layout–Image Blending
	3.2 Tile Pattern–Reachability Blending
	3.3 Multi-Game Blending Within Levels

	4 Conclusion

